With the integration of ultra-wideband sensors (UWB) in the new iPhone, Apple provided a popularity boost for UWB. The fact that such a sensor is now also integrated in the new Apple Watch 6 shows how much the tech giant expects from the technology. Not without reason UWB is also used in the fight against the COVID-19 virus. But what exactly are the advantages? Who is UWB interesting for? And how does ultra-wideband actually work? An overview.
Ultra-wideband or “UWB” is a radio-based communication technology for short-range use for the fast and stable transmission of data indoors and outdoors.
Thanks to its high precision, transmission speed and reliability, UWB technology is predestined for the localization of objects and people who move quickly on a small-scale and complex environments and processes.
Ultra-wideband is considered a key technology in the digitization of production and logistics. Because thanks to it, not only stationary “things” can be recorded, but also all mobile ones. This is the only way to seamlessly digitize shop floors, warehouses and process chains.
Action-packed shows are also digitized and automated via UWB. Because special effects are not only higher, louder and more glaring, but above all, faster. You can hardly keep up with it manually. Show special effects are therefore controlled on the screen with real-time tracking.
In team and extreme sports, the demands on performance and movement data are particularly high. In order to get ultra-fast and precise values despite the contorted halls, small playing fields, many athletes and additional network technologies, professionals rely on UWB
Even if ultra-wideband (UWB) is anything but in its infancy, the potential of the technology is far from being exhausted. The fact that Apple has integrated UWB sensors in its new iPhone but has not yet used them for the launch is just one example…
Where are shopping trolleys located? Where and for how long do customers stay? Questions like these, help improve the shopping experience. Localization and data analysis via UWB provide the answers and open up new ways of marketing.
Keeping the location and status of people in need of long-term care under control is also a task that can be automated with UWB — whether in intensive care units, emergency rooms or at home.
From the location of lost keys to the automatic unlocking and locking of doors and smart access restrictions for pets — there are many possible uses of UWB in the smart home area.
Even in contorted halls and rooms where different wireless connection technologies overlap, objects can be tracked live and in all directions.
Ultra-wideband is therefore one of the key technologies for particularly demanding application areas such as the Internet of Things (IoT). Thanks to UWB, it is not only possible to digitize and automate stationary machines with stable connections, but also all mobile “things”.
UWB is a wireless technology that, despite its long history, can be viewed as new. Unlike other technologies, it is not tied to any frequency. In addition, UWB can transmit data over an extremely wide frequency spectrum.
Unused frequency capacities can therefore be used ideally. The UWB frequency range is at least 500 MHz. For comparison: WLAN channels are only about a tenth as wide.
UWB technology is based on the international standard IEEE 802.15.4a, which defines the physical level of the IR-UWB. The standard in the form of 802.15.4z was reopened in 2018. This should give the physical level more security.
UWB combines very short impulses that move at the speed of light. The arrival time of the signal is measured precisely over a high bandwidth, thus determining the position of the transmitter with high precision.
If there is visual contact, distances of up to 250 meters (820.2 feet) can be achieved. Depending on the requirements, one of the following methods for position calculation is used:
Advantage: highest precision and positional stability
How it works: The anchors send UWB signals, the sensors return them. The distance is calculated based on the time it takes the pulses between sending and receiving.
Area of application: Real Time Localization of workers, tools and navigation of driverless transport systems
Advantage: lowest energy consumption
How it works: The sensor emits signals which the anchors receive at different times according to their distance. The sensor position is calculated using time differences.
Application scope: Real Time Localization of “things” in large numbers
Advantage: can be implemented in restricted infrastructures
How it works: In order to determine the sensor position, the phase difference between received signals at both anchor antennas is evaluated and the angle of the signal is calculated relative to the anchor.
Application scope: Real Time Localization of “things” in large numbers
Discover the potentials of the KINEXON RIoT platform.